

TUTH-<u>Typing on Your TeetH</u>: Tongue-Teeth Localization for Human-Computer Interface

Phuc Nguyen, Nam Bui, Anh Nguyen, Hoang Truong, Abhijit Suresh, Matthew Whitlock, Duy Pham, Thang Dinh, and Tam Vu

Mobile and Networked Systems Lab Department of Computer Science, University of Colorado Department of Computer Science, Virginia Commonwealth University

ACM MobiSys 2018

Upper Jaw

Lower Jaw

It is challenging for ALS patients to interact with computing devices

Other Potential Usages

A HAND-FREE INTERFACE FOR FACTORY WORKER

CONTROLLING PHONE WHILE DRIVING

HIDEN TEXT ENTRY INTERFACE

TURNING MUSIC SHEETS FOR MUSICIANS

USED IN TACTICAL SCENARIOS

TYTH – <u>Typing on Your TeetH</u>

<u>Experiment:</u> Put your fingers at the back-of-the ear locations. Then, press any teeth using your tongue

Anatomical and Neurological Analysis of Tongue-Teeth Interaction

Brain sends commands out

Anatomical Analysis of Tongue-Teeth Movement

Tongue is controlled by extrinsic and intrinsic muscles

It is difficult to make the device socially acceptable

Tongue is controlled by extrinsic and intrinsic muscles

Can we capture the tongue movement signal from this location?

Experimental Validation

Hardware Design

Sensing Techniques

Sensing Techniques

Sensing for EEG/EMG COTS Bioelectrical Sensing Circuit

Sensing Techniques

Skin Surface Deformation Sensing Technique

Capacitive sensing approach

Distance b/w 2 plates

Sensing Techniques

Challenge: These signals are extremely weak (mV/uV)

•<u>Software Components</u> to:

- De-noising the signal
- Extracting EEG, EMG from bio-electrical sensing data
- Detecting when the tongue is typing/pressing
- Classifying where the tongue is taping on
- Recognizing untrained areas
 Challenge: These signals are extremely weak (mV/uV)

System Overview

Low-Rank Analysis

• Every bio-signal f(x) can be represented as:

• Or,

Hend

$$f(x) = f(x_{\text{main structure}}) + f(x_{\text{detail structure}})$$

$$\Leftrightarrow f(x) = f(x_{\text{EEG signal}}) + f(x_{\text{EMG signal}}) + f(x_{\text{noise}})$$

$$\Leftrightarrow f(x) = \sum_{\theta_1}^{\theta_M} \delta_{\theta_i} g_{\theta_i} + \sum_{\theta_{M+1}}^{\theta_N} \delta_{\theta_i} g_{\theta_i} + \sum_{\theta_{N+1}}^{\theta_{N_D}} \delta_{\theta_i} g_{\theta_i}$$

Please refer our paper for more details

Number of Gabor atoms in a dictionary

 $\delta_i g_i$

atoms

 $N_{arGamma}$

 $f(x) = \sum_{x \in \mathcal{X}} f(x)$

Low-Rank Analysis

 $f(x_{\text{detail structure}}) \rightarrow f(x_{\text{noise}})$

MM Pressing Detection

How do we detect when a user is tapping?

$$W(s,p) = \int_{-\infty}^{+\infty} \tilde{r_f}(t) \overline{w_{s,p}}(t) dt$$
$$= \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} \tilde{r_f}(t) \overline{w_{s,p}} \Big(\frac{t-p}{s}\Big) dt$$

 How do we detect when a user is pressing the teeth?

$$f_{brain} = \max_{[f_{min} \to f_{max}]} \left(\left| \sum_{k=1}^{N} x(t) e^{-j2\pi f t k} \right|^2 \right)$$

Detecting the <u>Tongue Movement</u> by identifying the discontinuity of the signal. Detecting the <u>Tongue Pressing</u> based on the presence of the brain signal

Typing Area Classification: SVM - GMM

Building a classification model to detect the trained typing areas

Typing Area Localization

Please refer our paper for more details

Summary

Anatomical and Neurological Analysis \checkmark

Hardware Sensing Design

Host Device

Let's put things together

Performance Evaluation

Participant Demographics							
Age (years)	18 - 35 years old						
Gender Ratio	Male: 11, Female: 4						
Head size use	Small: 3, Medium: 8, Large: 4						

Teeth areas for evaluation

Typing Detection

Recognition Performance

												100
	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	0.0	8 <mark>7.</mark> 8	0.0	11.8	3.8	0.0	0.0	0.0	0.0	0.0	0.0 -	~~
	0.0	9.8	9 <mark>3.1</mark>	8.8	0.0	0.0	7.4	0.0	0.0	0.0	0.0	80
3	- 0.0	0.0	3.4	70.6	0.0	2.4	0.0	0.0	0.0	0.0	0.0 -	
	0.0	2.4	0.0	5.9	<mark>84.6</mark>	2.4	0.0	0.0	0.0	0.0	0.0	60
5	- 0.0	0.0	0.0	2.9	3.8	<mark>85.4</mark>	7.4	3.2	0.0	0.0	0.0 -	
	0.0	0.0	0.0	0.0	7.7	4.9	<mark>85.2</mark>	3.2	3.1	3.4	2.6	40
7	0.0	0.0	0.0	0.0	0.0	4.9	0.0	87.1	0.0	0.0	2.6 -	
	0.0	0.0	3.4	0.0	0.0	0.0	0.0	3.2	9 <mark>6.</mark> 9	3.4	0.0	20
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0.0	9 <mark>3.1</mark>	2.6 -	
	0.0	0,0	0.0	0,0	0.0	0,0	0.0	0,0	0.0	0,0	92.1	0
		1		3		5		7		9		U
		-		-		-		-		-		

Ground Truth Average Accuracy: 88.61%

User Study

Ease to use TYTH

User Study

TYTH's Sensing Techniques

Conclusions

- We introduce TYTH-Typing on Your TeetH,
 - A Non-invasive,
 - Continuous and Long-term use
 - and Socially Acceptable

wearable device for Tongue-Teeth Localization Applications.

- The key contributions include:
 - An analysis of brain, muscle, and skin deformation from behind the ears
 - An algorithm to extract the EEG, EMG signals
 - A novel method to sense a new type of signal, termed SKD signal
 - A ear-mounted wearable prototype
 - An evaluation of the system on 15 subjects

In progress

Miniaturization

Remove the impact of talking and body movement artifacts

• Improve the form factor for better contact quality

Danke schön !!!

T[•]TH-<u>Typing on Your TeetH</u>: Tongue-Teeth Localization for Human-Computer Interface

Phuc Nguyen, Nam Bui, Anh Nguyen, Hoang Truong, Abhijit Suresh, Matthew Whitlock, Duy Pham, Thang Dinh, and Tam Vu

> Mobile and Networked Systems Lab Department of Computer Science, University of Colorado Department of Computer Science, Virginia Commonwealth University

> > ACM MobiSys 2018

Thank you

Related Works

TongueSee – CHI'14

SITA - UIST '12

TongueWise – EMBC'10

Tongue-in-Cheek – CHI'15